Analytical Method Validation and Application for Natural Products Analysis

Asst.Prof.Dr.Jutamas Jiaranaikulwanitch

Pharmaceutical Science, Pharmacy

Chiang Mai University

T

What is the primary purpose of validating a method of analysis ?

To show that the method is fit for its intended purpose.

- Determine how much of a valuable, necessary, or characteristic ingredient is present in a product.
- Determine if a product meets specifications.
- Determine if a product meets regulatory requirements.
- Survey an environment to determine the presence and amount of a component, contaminant, or a nutrient.
- Identify a product and/or its components

What is this product?

How much of an analyte in the product (matrix)?

METHOD VALIDATION GUIDELINE

- ICH Guideline Q2(RI), Q2(R2)
- ASEAN Guideline for Validation of Analytical Procedures
- AOAC
 - Appendix F Guidelines for Standard Method Performance Requirements
 - Appendix K Guidelines for Dietary Supplements and Botanicals
- U.S. FDA Guidance
- Guideline on Bioanalytical Method Validation (ICH MI0)

Validation study is designed to provide sufficient evidence that the analytical procedure meets its objectives.

These objectives are described with a suitable set of performance characteristics and related performance criteria, which can vary depending on the intended use of the analytical procedure and the specific technology selected

ICH guideline Q2 (R2) : Validation of analytical procedures

Type of measured	Identity	Impurity		Assay	
product attribute		Other quantitative		content/potency	
Analytical		measurement (1)		Other quantitative	
Procedure		Quantitative Limit		measurement (1)	
Performance					
Characteristics to be					
demonstrated (2)					
Specificity (3)					
Specificity Test	+	+	+	+	
Working Range					
Suitability of Calibration model	-	+	-	+	
Lower Range Limit verification	-	QL (DL)	DL	-	
Accuracy (4)					
Accuracy Test	-	+	-	+	
Precision (4)					
Repeatability Test	_	+	-	+	
Intermediate Precision Test	-	+ (5)	-	+ (5)	

6

Validation Study Design and Evaluation

Objectives / Performance Characteristics ٠ Analytical Procedure AP Lifecycle management ٠ Related development data ٠ ICH Q14 ICH Q2 Validation protocol Validation report Plan for validation strategy: Document validation results and data: Evaluation of existing development or validation ٠ Evaluation against acceptance criteria or parameter ٠ data with justification ranges Additional experiments and evaluation according Q2 ٠ Conclusions and acceptance of analytical procedure ٠ (standard) methodology or alternative approach with performance justification

Validation during the lifecycle of an analytical procedure

Changes

Science and risk-based principles

Revalidation

REPORTABLE RANGE

- The reportable range is typically derived from the product specifications and depends on the intended use of the procedure.
- The reportable range is confirmed by demonstrating that the analytical procedure provides results with acceptable accuracy, precision and specificity.
- The reportable range should be inclusive of the upper and lower specification or reporting limits, as applicable.

Reportable ranges for common uses of analytical procedures

Use of analytical procedure	Low end of reportable range	High end of reportable range
Assay of a drug substance or a finished (drug) product	80% of lower specification limit	120% of upper specification limit
Potency	Lowest specification acceptance criterion -20%	Highest specification acceptance criterion +20%
Content uniformity	70% of declared content	130% of declared content
Dissolution testing	Q-45% (immediate release) of the dosage form strength first measurement timepoint or QL (modified release)	130% of declared content of the dosage form
Impurity testing	Reporting threshold	120% of specification limit
Purity testing (as area %)	80% of specification limit	100% of specification limit

Demonstration of stability indicating properties

procedure that can detect changes in relevant quality attributes of a drug substance or drug product during storage

To demonstrate specificity/selectivity of a stability-indicating test

List				
samples spiked with target analytes and all known interferences				
Samples exposed to stress conditions (Forced degradation)	Example condition			
 Higher temperature and/or humidity 	Water, reflux at 80 °C			
Acid hydrolysis	0.1 N HCl reflux at 80 °C			
Basis hydrolysis	0.1 N NaOH reflux at 80 °C			
Oxidation	6% v/v H ₂ O ₂			
Photodegradation	White light and/or UV light (6 hrs.)			

METHOD VALIDATION PROCEDURE

System Suitability

Method Validation

METHOD VALIDATION PROCEDURE

Method Optimization

Optimization of a separation is principally directed by the following goals:

- to separate better (higher resolution)
- to separate faster (shorter retention time)
- to see more (lower detection limit)
- to separate at lower cost (economic effort)
- to separate more (higher throughput).

- Condition Analysis : Mobile phase, pH, Temperature
- Concentration Range
- Sample Preparation

- System suitability parameters
 - Standard back calculation

Catechin and Epicatechin Determination in Fermented Tea

- Condition : mobile phase, pH, temp
- Concentration of standard
- Concentration of sample

Sample

<Chromatogram>

uV

Sample (spike standard)

17

Catechin and Epicatechin Determination in Fermented Tea

- Condition : mobile phase, pH, temp
- Concentration of standard
- Concentration of sample

Catechin and Epicatechin Determination in Fermented Tea

<Chromatogram>

- Condition : mobile phase, pH, temp
- Concentration of standard
- Concentration of sample

Catechin and Epicatechin Determination in Fermented Tea

The objective : stability indicating => LOQ – XX %

Find out the concentration of API in the test substance = The test level of 100%

Test substance concentration 500 µg/mL had Catechin: ~30 µg/mL (FM Tea)

The test level of 100% = Catechin 30 μg/mL 80% = 24 μg/mL & 120% = 36 μg/mL

METHOD VALIDATION PROCEDURE

System Suitability

• Confirmatory test(s) procedures and parameters to ensure that the system (equipment, electronics, and analytical operations and controls to be analyzed) will function correctly as an integrated system at the time of use. The system suitability acceptance criteria applied to standards controls and samples, such as peak tailing, precision, capacity factor, S/N, Theoretical plate and resolution acceptance criteria, may be required as applicable. For system suitability of chromatographic systems, refer to the FDA guidance for industry on Validation of Chromatographic Methods and USP General Chapter <621> Chromatography.

METHOD VALIDATION PROCEDURE

Method Validation

The objective of validation of an analytical procedure is to demonstrate that it is suitable for its intended purpose.

- Identification
- Quantitative tests for impurities' content
- Limit tests for the control of impurities
- Quantitative tests of the active moiety in samples

ICH Q2 R2

- **Specificity** is the ability to assess unequivocally the analyte in the presence of components which may be expected to be present. Typically, these might include impurities, degradants, related substances, matrix, or other components.
 - Absence of interference : identification and/or quantitation of an analyte is not impacted by the presence of other substances
 - Orthogonal procedure comparison : measured result of an analyte is comparable to the measured result of orthogonal procedure
 - Technology inherent justification : specificity of the analytical technology can be ensured and predicted by technical parameters (e.g., resolution of isotopes in mass spectrometry, chemical shifts of NMR signals), no experimental study may be required.

Identification Method

- Reference material
- Sample containing the analyte (positive result)
- Sample do not contain the analyte (negative result)
- Material structurally similar or closely related to the analyte (negative result)

Assay, purity- and impurity test(s)

The specificity/selectivity of an analytical procedure should be demonstrated to fulfil the accuracy requirements

- Specificity can be demonstrated by the resolution of the two components which elute closest to each other.
- Reference material
- Sample (unspiked)
- Spiked sample (with impurities and/or excipients)
- Blank matrix (placebo)
- Dilution solvent
- Impurities (stress condition) => Stability indicating method

AOAC (2023)

Selectivity is the degree to which the method can quantify the target analyte in the presence of other analytes, matrices, or other potentially interfering materials.

- Selective solvent extraction
- Chromatographic
- Phase separations

Resolution, Rs, is expressed as a function of both the absolute separation distance expressed as retention times (minutes) of the two peaks

- At least 1.5 is usually sought
- At least 2 for active drug dosage forms, including hydrolytic, photolytic, and oxidative degradation products (USFDA suggest)

AOAC (2023)

Selectivity is the degree to which the method can quantify the target analyte in the presence of other analytes, matrices, or other potentially interfering materials.

- Reference material
- Sample
- Spiked sample
- Blank matrix (placebo, formulation)
- Dilution solvent
- Impurities (stress condition) => Stability indicating method

Catechin and Epicatechin Determination in Fermented Tea

ICH Q2 R2

Depending on the sample preparation (e.g., dilutions) and the analytical procedure selected, the reportable range will lead to a specific working range

Linear Response

The response can be demonstrated directly on the drug substance (e.g., by dilution of a standard stock solution) or separate weightings of synthetic mixtures of the drug product components, using the proposed procedure.

- a plot of the data
- the correlation coefficient (r) or coefficient of determination (r^2)
- y-intercept and slope of the regression line
- the residuals plot (non-random pattern)

Linear Response

ICH Q2R2

For the establishment of linearity, a minimum of five concentrations appropriately distributed across the range is recommended; however, additional concentrations may be required for more complex models.

AOAC (2023)

Calibration : Six to 8 points, approximately equally spaced over the concentration range of interest, performed in duplicate.

- the correlation coefficient (r) > 0.99
- the residuals plot (non-random pattern)

Use of analytical procedure	Low end of reportable range
Assay	80% of lower specification limit
Potency	±20% of specification
Content uniformity	70-130% of declared content
Dissolution testing	Q-45% to 130% (immediate release) QL to 130% (modified release) ± 20% of specified range (USP)
Impurity testing	Reporting threshold to 120% 50-120% acceptance criterion (USP)
Purity testing (as area %)	80-100% of specification limit

ICH Q2 R2

Depending on the sample preparation (e.g., dilutions) and the analytical procedure selected, the reportable range will lead to a specific working range

Sample Preparation (aspirin tablet)

ASSAY

PROCEDURE

Mobile phase: 2 g/L of sodium 1-heptanesulfonate in a mixture of acetonitrile and water (15:85). Adjust with glacial acetic acid to a pH of 3.4.
Diluent: Acetonitrile and formic acid (99:1)
Standard solution: 0.5 mg/mL of USP Aspirin RS in *Diluent*Sample stock solution: Nominally 5 mg/mL of aspirin prepared as follows. Transfer a quantity, equivalent to about 100 mg of aspirin from NLT 20 finely powdered Tablets, to a suitable container. Add 20.0 mL of *Diluent* and 10 glass beads. Shake vigorously for about 10 min, and centrifuge.
Sample solution: Nominally 0.5 mg/mL of aspirin in *Diluent*

from Sample stock solution

WORKING RANGE Drug pr

Drug product (aspirin tablet)

Standard curve solutions spike matrix				
Standard aspirin	Actual peak area			
concentraion (mg/mL)	Linear 1	Linear 2	Linear 3	Average
0.2500	931521.0	929511.0	912307.0	924446.3
0.3750	1409467.0	1376515.0	1391157.0	1392379.7
0.5000	1890856.0	1851009.0	1838093.0	1859986.0
0.6250	2314547.0	2421425.0	2350228.0	2362066.7
0.7500	2762844.0	2806480.0	2806480.0	2791934.7
r	0.9997	0.9986	0.9998	0.9998
r ²	0.9994	0.9973	0.9997	0.9996
Slope	3654180.8	3839078.4	3797933.6	3763730.9
Intercept	34756.6	-42551.2	-39313.8	-15702.8
% y-intercept	1.84	-2.30	-2.14	-0.84
Predicted Area				
Standard aspirin	Linear 1	Linear 2	Linear 3	Average
concentraion (mg/mL)				Average
0.2500	948301.8	917218.4	910169.6	925229.9
0.3750	1405074.4	1397103.2	1384911.3	1395696.3
0.5000	1861847.0	1876988.0	1859653.0	1866162.7
0.6250	2318619.6	2356872.8	2334394.7	2336629.0
0.7500	2775392.2	2836757.6	2809136.4	2807095.4
Residue				
Standard aspirin	1:	1		A
concentraion (mg/mL)	Linear 1	Linear 2	Linear 3	Average
0.2500	-16780.8	12292.6	2137.4	-783.6
0.3750	4392.6	-20588.2	6245.7	-3316.6
0.5000	29009.0	-25979.0	-21560.0	-6176.7
0.6250	-4072.6	64552.2	15833.3	25437.6
0.7500	-12548.2	-30277.6	-2656.4	-15160.7

Residuals = Area Observed – Area Predicted

RESIDUAL PLOT

Residuals = Area Observed – Area Predicted

Residual values are randomly spaced around the horizontal axis and no specific trend of data are observed

Standard curve solutions spike matrix				
Standard aspirin	Actual peak area			
concentraion (mg/mL)	Linear 1	Linear 2	Linear 3	Average
0.2500	931521.0	929511.0	912307.0	924446.3
0.3750	1409467.0	1376515.0	1391157.0	1392379.7
0.5000	1890856.0	1851009.0	1838093.0	1859986.0
0.6250	2314547.0	2421425.0	2350228.0	2362066.7
0.7500	2762844.0	2806480.0	2806480.0	2791934.7
r	0.9997	0.9986	0.9998	0.9998
r ²	0.9994	0.9973	0.9997	0.9996
Slope	3654180.8	3839078.4	3797933.6	3763730.9
Intercept	34756.6	-42551.2	-39313.8	-15702.8
% y-intercept	1.84	-2.30	-2.14	-0.84

%y-intercept

Drug product (aspirin tablet)

- assay ±2%, impurity ±5%

- multiple point calibration

- single point calibration

% Intercept = (y-intercept x 100) / response at 100% = -15702.8 x 100 / 1859986.0 = -0.8442
WORKING RANGE

Sample Preparation (Herbal)

2.4. Preparation of standard and sample solutions

Stock solutions of curcumin, DEMC and BDEMC (about 1 mg/ml) were prepared in 95 ml/100 ml ethanol in water and stored at around 4 °C condition. The stock solution was then diluted with 95 ml/100 ml ethanol in water to the appropriate concentration range to establish calibration curves.

0.4 ml of water-soluble or oil-soluble turmeric colour principals and about 0.0800 g of solid powder of turmeric colour principals were accurately dissolved in 10 mL 95 ml/100 ml ethanol in water,

respectively. Curry powder and rhizoma curcumae longae (about 1.0000 g) were accurately weighed and extracted by ultrasonication at 40 °C for 20 min with 20 mL 95 ml/100 ml ethanol in water. The solution of four times extractions was combined and adjusted to the 100 mL. The primary filtrate was discarded. The subsequent filtrate was used for HPLC analysis. Then each solution was filtered through a 0.45 μ m nylon 66 membrane prior to analysis and injected into HPLC system. The injection volume was 10 μ L.

Optimization data

WORKING RANGE

Sample

6 to 8 points x duplicate

Std stock 1 mg/mL

WORKING RANGE (LOWER RANGE LIMITS)

Detection limit (DL) and Quantitation limit (QL)

- I. Based on visual evaluation
- 2. Based on Signal-to-Noise (DL = 3:1, QL = 10:1)
- 3. Based on the Standard Deviation of a Linear Response and a Slope

$$DL = \underline{3.3 \sigma}$$

$$QL = \underline{10 \sigma}$$

$$S$$

 σ = the standard deviation of the response S = the slope of the calibration curve ICH Q2R2

WORKING RANGE (LOWER RANGE LIMITS)

Detection limit (DL)

ICH Q2R2

- Based on visual evaluation
- Based on Signal-to-Noise (DL = 3:1)
- By calculation or extrapolation : this estimate can subsequently be validated by the analysis of a suitable number of samples known to be near or at the DL

Quantitation limit (QL)

- If the QL was estimated, the limit should be subsequently validated by the analysis of a suitable number of samples known to be near or at the QL
- For impurity tests, the quantitation limit for the analytical procedure should be equal to or below the reporting threshold.

Based on the Standard Deviation of the Response and the Slope

std curve	Intercept	Slope	r ²	
I	6145.51	11125.55	0.9998	
2	-4368.61	12848.38	1.0000	$LOD = 3.3 \times 3783.08/130/.36$
3	4217.89	13877.75	0.9999	= 1.51 µg/mL
4	6145.50	10480.00	0.9998	
5	4883.37	14772.40	0.9997	LOQ = 10 x 5983.68/1307.56
6	16204.59	15355.30	0.9996	= 4.58 µg/mL
Ave	5538.04	13076.56	0.9998	10
SD	5983.68	1794.02	0.0001	

Based on Signal-to-Noise

<Peak Table>

Detect	<u>tor A 210nm</u>						
Peak#	Ret. Time	Area	Tailing Factor	Resolution(USP)	Capacity Factor(k')	S/N	Noise
1	3.700	1499745	0.700		-	55.88	1890.66
2	9.585	10232	1.134	19.772	1.591	0.44	1890.66
3	14.644	7182	1.133	13.208	2.958	0.23	1890.66
Tota		1517160					

<Peak Table>

Detector A 210nm

Peak#	Ret. Time	Area	Tailing Factor	Resolution(USP)	Capacity Factor(k')	S/N	Noise
1	3.697	1164169	0.811			52.96	1867.69
2	9.571	17824	1.048	20.533	1.589	0.83	1867.69
3	14.637	15833	1.086	13.162	2.959	0.48	1867.69
Total		1197826					

Based on Signal-to-Noise

<Peak Table>

Detecto	or a 210nm						
Peak#	Ret. Time	Area	Tailing Factor	Resolution(USP)	Capacity Factor(k')	S/N	Noise
1	3.697	1168213	0.801			53.16	1849.54
2	9.583	26922	1.065	20.420	1.592	1.25	1849.54
3	14.647	21337	1.040	13.327	2.962	0.69	1849.54
Total		1216472					

<Peak Table>

Detecto	or A 210nm						
Peak#	Ret. Time	Area	Tailing Factor	Resolution(USP)	Capacity Factor(k')	S/N	Noise
1	3.697	1181741	0.777			54.46	1770.16
2	9.565	42169	1.066	20.314	1.588	2.03	1770.16
3	14.624	33461	1.040	13.332	2.956	1.13	1770.16
Total		1257371					

DETECTION & DETERMINATION LIMIT

AOAC 2023

• limit of detection and limit of determination is based upon the variability of the blank. The blank value, x_{Bl} , plus 3 times the standard deviation of the blank (x_{Bl} + $3s_{Bl}$) is taken as the detection limit and the blank value plus 10 times the standard deviation of the blank (x_{Bl} + $10s_{Bl}$) is taken as the determination limit.

ICH Q2 R2

- Accuracy should be established across the reportable range of an analytical procedure
- Accuracy should be demonstrated under regular test conditions of the analytical procedure (in the presence of sample matrix)

- Reference material comparison (drug substance)
- Spiking Study
- > Orthogonal Procedure comparison

Accuracy should be reported as the mean percent recovery by the assay of a known added amount of analyte in the sample or as the difference between the mean and the accepted true value together with the confidence intervals.

The 95% Confidence interval = mean $\pm (t_{(0.05,n-1)} \times SD) / \sqrt{n}$

Sample	No.	Peak area	Observed concentration (mg/mL)	Recovery (%)
Accuracy		931521	0.2457	98.30
solutions	2	929511	0.2452	98.08
(0.25 mg/mL)	3	958150	0.2529	101.15
Accuracy	I	1890856	0.5026	100.52
solutions	2	1851009	0.4919	98.39
(0.50 mg/mL)	3	1904496	0.5063	101.25
Accuracy	I	2762844	0.7361	98.14
solutions	2	2806480	0.7478	99.70
(0.75 mg/mL)	3	2825335	0.7528	100.38
		Mean (n=9)		99.55
		SD (n=9)		1.33
		1.34		
	9 5% c	confidence interval		1.02

• Acceptance criteria: 98-102%

The 95% Confidence interval = mean $\pm (t_{(0.05,n-1)} \times SD) / \sqrt{n}$

t Table												
cum. prob	t _{.50}	t _{.75}	t _{.80}	t _{.85}	t _{.90}	t _{.95}	t _{.975}	t _{.99}	t _{.995}	t _{.999}	t _{.9995}	
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005	
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001	
df												
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62	
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599	
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924	
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	2			,
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	2	= 99	55 +	$(2306 \times 133)/\sqrt{9}$
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3	- //		$(2.300 \times 1.33)/ \forall 7$
7	0.000	0.711	0.896	1.119	1.415	1.895	2 365	2.998	3			
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3	= 99	55 +	1 02
9	0.000	0.703	0.883	1.100	1.383	1.833	2.202	2.821	3	- //		1.02
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3			
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3	= 98	53 _	100 57 %
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3	/0		100.37 /0
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221	
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140	
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073	
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015	40
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965	49

- The available certified or commercial analyte standard, diluted if necessary, is added to typical analyte-free matrices at levels about 1x or 2x the expected concentration.
- Analyte-free matrices for residues are obtained from growers who certify that the chemical is not used in their cultivation, growth, or feeding and verified analytically. They may also be obtained from the residues of previously extracted materials or from test samples shown to be negative for the analyte.
- If an analyte-free matrix is not available, the analyte standard is added to separate test portions and the recovery is calculated from the base determined by the method of addition.

Determined from spiked blanks or samples with at least seven independent analyses per concentration level at a minimum of three concentration levels covering the analytical range

- Marginal % recovery = $(C_f C_u) \times 100/C_A$
- Total % recovery = $100(C_f)/(C_u + C_A)$

where

- C_f = concentration of fortified samples,
- C_u = concentration of unfortified samples
- C_A = concentration of analyte added to the test sample

10⁻⁹

100

10

0.1

0.01

0.0000001

AOAC 2023 Expected recovery as a function of analyte concentration

Analyte, % Mass fraction (C) Unit Mean recovery, % 100% 98-102 10-1 10% **10**⁻² 1% 97-103 **10**-3 0.1% 95-105 10-4 100 ppm (mg/kg) 90-107 **10**⁻⁵ 0.001 80-110 10 ppm (mg/kg) 10-6 0.000 I ppm (mg/kg) 100 ppb (µg/kg) 10-7 0.00001 **10**-8 60-115 0.000001 10 ppb (µg/kg)

I ppb (µg/kg)

40-120

ACCURACY Analytes Compound Original Spiked Found RSD Recovery (%)^b (%)^a (μg) (µg) (µg) Water-soluble 2.18 Curcumin 189.2 95.8 284.3 99.3 (EXAMPLE) 2.14 191.7 384.3 104.0 268.4 454.2 98.8 1.72 DEMC 55.8 35.5 92.2 102.6 2.4653.2 111.3 100.1 2.00 74.5 3.11 131.5 101.6 BDEMC 154.1 85.7 238.5 98.5 Marginal % recovery = $(C_f - C_{\mu}) \times 100/C_A$ 101.3 171.4 325.0 99.4 239.9 392.7 1.82 Oil-soluble Curcumin 60.7 31.6 92.6 100.8 3.09 79.1 14 Recovery (%) = <u>100 x (measured amount - original amount)</u> 102.8 spiked amount DEMC 33.1 14.8 37.1 70.9 102.0 2.62 48.2 80.7 98.8 2.90BDEMC 70.4 35.9 107.1 101.9 2.94 89.9 102.7 3.56 162.8 2.82 116.9 187.1 99.8 Solid powder 336.8 160.0 493.4 97.8 2.32 Curcumin 319.9 664.7 102.4 2.99415.9 767.5 103.5 2.97 DEMC 66.8 48.8 114.8 98.2 3.08 63.5 132.7 103.7 2.21 82.5 147.4 97.7 1.46 BDEMC 24.5 2.80 33.6 58.4 101.2 31.9 66.4 103.0 3.36 76.6 103.9 2.54 41.4

Accuracy of the three curcuminoids in turmeric pigment.

Catechin and Epicatechin Determination in Fermented Tea

- At least 3 conc x 7 replicates
 - 80%, I 00%, I 20%

- At least 3 conc x 7 replicates
- 80%, 100%, 120%

sample	%std	added	added conc *	РА	average PA	(sp PA+std) - sp PA	found conc.(ug/ml)	Accuracy	Precision	
		conc.(ug/mi)	punty/100					(% recovery)	(%RSD)	
				328539	325311		29.82			
				328468			29.81			
				324748		Margina	1% recovery	= (C - C)) x 10	
	0			325342		I lai gilla		$-(C_f - C)$		
				323096			29.32			
				323097			29.32			
				323889			29.39			
		23.75	22.37	590462	593428	265151	24.00	107.26	1.48	•
				590941		265630	24.04	107.46		
				596206		270895	24.52	109.62		
	80			595107		269796	24.42	109.17		
				595105		269794	24.42	109.17		
ชาหมัก				598729		273418	24.75	110.66		
				587448		262137	23.72	106.03		
		29.67	27.95	629877	633278	304566	27.62	98.81	2.38	
				635291		309980	28.12	100.59		
				632419		307108	27.85	99.65		
	100			632420		307109	27.85	99.65		
				647288		321977	29.22	104.54		
				623405		298094	27.02	96.68		
				631387		306076	27.76	99.31		
		35.58	33.52	706195	703627	380884	34.63	103.32	2.07	
				693527		368216	33.47	99.84		
				693530		368219	33.47	99.85		
	120			705425		380114	34.56	103.11		
				699899		374588	34.05	101.59		
				701285		375974	34.18	101.97		
				715433		390122	35.48	105.85		
							Mean	103.53	1.98	
							SD	4.20		
							%RSD	4.06		57

The 95% Confidence interval = mean $\pm (t_{(0.05,n-1)} \times SD) / \sqrt{n}$

t Table											
cum. prob	t _{.50}	t _{.75}	t _{.80}	t _{.85}	t _{.90}	t _{.95}	t _{.975}	t _{.99}	t .995	t _{.999}	t _{.9995}
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819

= $103.53 \pm (2.086 \times 4.20) / \sqrt{21}$

- = 103.53 ± 1.91
- = 101.62 105.44 %

Test concentration : 23-35 (ug/ml) Acceptance criteria:

100 ppm => recover 90-107%

ICH Q2 R2

Precision should be investigated using homogeneous, authentic samples or artificially prepared samples (e.g., matrix mixtures spiked with relevant amounts of the analyte in question).

Repeatability

I. a minimum of 9 determinations covering the specified range for the procedure (e.g., 3 concentrations/3 replicates each);

2. a minimum of 6 determinations at 100% of the test concentration

$\% \text{ RSD } \leq \textbf{2.0\%}$

ICH Q2 R2

Intermediate Precision

Typical variations to be studied include different days, environmental conditions, analysts and equipment, as relevant. Ideally, the variations tested should be based on and justified by using analytical procedure

Reproducibility

Reproducibility is assessed by means of an inter-laboratory trial. Reproducibility should be considered in case of the standardization of an analytical procedure, for instance, for inclusion of procedures in pharmacopoeias.

artificially prepared samples

- 9 determinations
- At least 3 conc x 3 replicates
- 80%, 100%, 120%

authentic samples

- 6 determinations
- At I conc x 6 replicates
- Conc 100%

							/
		Standard aspirin	(mg/mL)	Actual peak	area (day I)	Actual peak	area (day 2)
	PRECISION	0.2500		9483	29.0	947542	
		0.3750		13848	326.0	138	5555
		0.5000		18912	255.0	1884	4253
		0.6250		24123	344.0	2412	344.0
6 R.	$SD = SD \times 100$	0.7500		27688	335.0	2768	8830
		r ²		0.99	67	0.9	968
	X	Slope		37348	324.0	3735	492.0
		Intercep	t	1370	5.80	1195	58.80
				Intraday p	precision	Interday	precision
	$\% \text{ RSD } \leq 2.0\%$	Sample	No.	Area	% Recovery	Area	% Recovery
		Accuracy	I	931521	98.3	935540	98.90
		solutions	2	929511	98.08	937758	99.14
		(0.25 mg/mL)	3	958150	101.15	959000	101.41
		Accuracy	I	1890856	100.52	1892741	100.70
		solutions	2	1851009	98.39	1854592	98.66
		(0.50 mg/mL)	3	1904496	101.25	1903785	101.29
		Accuracy	I	2762844	98.14	2798854	99.47
		solutions	2	2806480	99.7	2823345	100.35
		(0.75 mg/mL)	3	2825335	100.38	2835597	100.79
		Average (r	n=9)		99.55		100.08
		% RSD (n [:]	=9)		1.34		1.05
				Average (n=18)		99.81
				% RSD (n=18)			1.20

PRECISION	Standard aspirin co (mg/mL	oncentration -)	Actual pe (day	eak area 7 I)	Actual peak area (day 2)	
			18510	09.0	1855	428.0
$6 \text{ RSD} = \text{SD} \times 100$			18908	356.0	1894	862.0
	0.5000		18912	255.0	1842	578.0
X			1838093.0		1897	253.0
		1859986.0		1852	463.0	
% DCD < 2.0%	average		1866239.8		1868516.8	
$/0$ NJD \geq 2.0/0	Samala	No.	Intraday precision		Interday precision	
	Sample		Area	%Assay	Area	%Assay
		I	1890856	101.32	1892741	101.30
		2	1851009	99.18	1854592	99.25
	Sample solutions	3	1904496	102.05	1903785	101.89
	(equivalent aspirin	4	1878900	100.68	1877452	100.48
		5	1904582	102.05	1885259	100.90
		6	1887582	101.14	1900054	101.69
	Average (r	ו=9)		101.07		100.92
	% RSD (n	=9)		1.06		0.95
		Aver	age (n=18)			100.99
	% RSD		SD (n=18)			0.96

AOAC (2023)

Repeatability

Prepare and homogenize three unknown samples at different concentrations to represent the full, claimed range of the method. Analyze each unknown sample by the candidate method seven times, beginning each analysis from weighing out the test portion through to final result with no additional replication

• Intermediate Precision (within-laboratory deviation)

AOAC (2023)

Reproducibility

Quantitative methods: Recruit 10– 12 collaborators; must have eight valid data sets; two blind duplicate replicates at five concentrations for each analyte/ matrix combination to each collaborator.

Qualitative methods: Recruit 12–15 collaborators; must have 10 valid data sets; six replicates at five concentrations for each analyte/ matrix combination to each collaborator.

Expected precision as a function of analyte concentration

A	Mass freshier (C)	I I	RSD, %				
Analyte, %	Mass fraction (C)	Unit	Repeatability	Reproducibility			
100	I	100%	1.3	2			
10	I 0 ⁻¹	10%	1.9	3			
I	I 0 ⁻²	1%	2.7	4			
0.1	I 0 ⁻³	0.1%	3.7	6			
0.01	I 0 ⁻⁴	100 ppm (mg/kg)	5.3	8			
0.001	I 0 ⁻⁵	10 ppm (mg/kg)	7.3	11			
0.0001	I 0 ⁻⁶	l ppm (mg/kg)	11	16			
0.00001	I 0 ⁻⁷	100 ppb (µg/kg)	15	22			
0.000001	I 0 ⁻⁸	10 ppb (µg/kg)	21	32			
0.0000001	I 0 ⁻⁹	l ppb (µg/kg)	30	45			

sample	%std	added	added conc *	РА	average PA	(sp PA+std) - sp PA	found conc.(ug/ml)	Accuracy	Precision	
		conc.(ug/mi)	punty/100					(% recovery)	(%KSD)	
_	0			328539	325311		29.82			
				328468			29.81			
				324748		Margina	1% recovery	= (C - C)	$) \times 10$	
				325342		I lai gilla		$-(C_f - C)$		
				323096			29.32			
				323097			29.32			
				323889			29.39			
		23.75	22.37	590462	593428	265151	24.00	107.26	1.48	•
				590941		265630	24.04	107.46		
				596206		270895	24.52	109.62		
ชาหมัก	80			595107		269796	24.42	109.17		
				595105		269794	24.42	109.17		
				598729		273418	24.75	110.66		
				587448		262137	23.72	106.03		
		29.67	27.95	629877	633278	304566	27.62	98.81	2.38	
				635291		309980	28.12	100.59		
				632419		307108	27.85	99.65		
	100			632420		307109	27.85	99.65		
				647288		321977	29.22	104.54		
				623405		298094	27.02	96.68		
				631387		306076	27.76	99.31		
	120	35.58	33.52	706195	703627	380884	34.63	103.32	2.07	
				693527		368216	33.47	99.84		
				693530		368219	33.47	99.85		
				705425		380114	34.56	103.11		
				699899		374588	34.05	101.59		
				701285		375974	34.18	101.97		
				715433		390122	35.48	105.85		
							Mean	103.53	1.98	
							SD	4.20		
							%RSD	4.06		69

Expected precision as a function of analyte concentration

A	Mass freshier (C)		RSD, %		
Analyte, %	Mass fraction (C)	Unit	Repeatability	Reproducibility	
100	I	100%	1.3	2	
10	I 0 ⁻¹	10%	1.9	3	
I	I 0 ⁻²	١%	2.7	4	
0.1	I 0 ⁻³	0.1%	3.7	6	
0.01	I 0 ⁻⁴	100 ppm (mg/kg)	5.3	8	
0.001	I 0 ⁻⁵	10 ppm (mg/kg)	7.3	11	
0.0001	I 0 ⁻⁶	l ppm (mg/kg)	11	16	
0.00001	I 0 ⁻⁷	100 ppb (µg/kg)	15	22	
0.000001	I 0 ⁻⁸	10 ppb (µg/kg)	21	32	
0.0000001	I 0 ⁻⁹	l ppb (µg/kg)	30	45	

EXAMPLE: CURCUMIN QUANTITATION AND STABILITY STUDY

LWT - Food Science and Technology 57 (2014) 446-451

Contents lists available at ScienceDirect

LWT - Food Science and Technology

journal homepage: www.elsevier.com/locate/lwt

Research note

Isolation of three curcuminoids for stability and simultaneous determination of only using one single standard substance in turmeric colour principles by HPLC with ternary gradient system

Hai-Xia Li, Hong-Ling Zhang, Nan Zhang, Ning Wang, Yao Yang, Zhen-Zhong Zhang*

School of Pharmaceutical Sciences, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan Province 450002, PR China

WHAT IS THE DATA FROM LITERATURE?

- Analytical procedure (condition)
- Sample preparation
- Working range

respectively. Curry powder and rhizoma curcumae longae (about 1.0000 g) were accurately weighed and extracted by ultrasonication at 40 °C for 20 min with 20 mL 95 ml/100 ml ethanol in water. The solution of four times extractions was combined and adjusted to the 100 mL. The primary filtrate was discarded. The subsequent filtrate was used for HPLC analysis. Then each solution was filtered through a 0.45 μ m nylon 66 membrane prior to analysis and injected into HPLC system. The injection volume was 10 μ L.

Table 1

Calibration curve, linear range, LOQ, LOD and relative response factors of the investigated compounds.

Compounds	Linear regression data		LOQ (µg/ml)	LOD (µg/ml)	
	Regression equation	r^2	Linear range (µg/ml)		
Curcumin	y = 76.811x + 15.291	0.9996	9.50-152.00	0.84	0.27
DEMC	y = 109.09x + 64.093	0.9996	8.83-141.33	0.55	0.18
BDEMC	y = 79.592x + 10.68	0.9994	10.33-165.33	0.75	0.23

LOQ, limits of quantification, S/N = 10; LOD, limits of detection, S/N = 3.

Designed method validation protocol

Optimized condition

Designed method validation protocol

System suitability	Standard curcuminoid at concentration of curcumin 30 µg/mL (5-6 injection)
Specificity	Standard curcumin (curcuminoid) at concentration of curcumin 30 µg/mL, Sample 800 µg/mL, Sample (stress condition), Mixtures, Etc.
linearity	Standard curcumin 5,10,20,30,40,50 μg/mL spike with sample 800 μg/mL (triplicate)
Accuracy	Standard curcumin <mark>5,10,</mark> 20,30,50 μg/mL spike with sample 800 μg/mL (triplicate)
Precision	Sample 800 µg/mL (6 replicates)
Quantitation limit	Standard curcumin <mark>5,10</mark> μg/mL spike with sample 800 μg/mL (triplicate)

SEQUENTIAL DESIGNED

Name	(n x inj)	min	Name	(n x inj)	min
System suitability	I x 5	150	Calibration curve		
Specificity - Standard curcumin 30 µg/mL - Standard curcumin - Sample 800 µg/mL - Stress sample 800 µg/mL	x x x x x	30 30 30 30 30 30 30 30	- Std cur 5 μg/mL - Std cur 10 μg/mL - Std cur 20 μg/mL - Std cur 30 μg/mL - Std cur 40 μg/mL - Std cur 50 μg/mL	x x x x x x	30 30 30 30 30 30 30
- Solvent - Etc			blank		30
linearity			accuracy		
 Std cur 0 μg/mL + sample Std cur 5 μg/mL + sample Std cur 10 μg/mL + sample Std cur 20 μg/mL + sample Std cur 30 μg/mL + sample Std cur 40 μg/mL + sample Std cur 50 μg/mL + sample 	3 x 3 x	90 90 90 90 90 90 90	- Std cur 0 μg/mL + sample - Std cur 5 μg/mL + sample - Std cur 10 μg/mL + sample - Std cur 20 μg/mL + sample - Std cur 30 μg/mL + sample - Std cur 50 μg/mL + sample	3 x 3 x 3 x 3 x 3 x 3 x 3 x	90 90 90 90 90 90
blank		30	blank		30
			Precision (sample 800 µg/mL)	6 x l	180
Summary		16.5 h			16 h

SEQUENTIAL DESIGNED

Name	(n x inj)	min	
System suitability	l x 5	150	
Calibration curve			
- Std cur 5 μg/mL	30	30	
- Std cur 10 µg/mL	30	30	
- Std cur 20 µg/mL	30	30	
- Std cur 30 µg/mL	30	30	
- Std cur 40 μg/mL	30	30	
- Std cur 50 µg/mL	30	30	
blank	30	30	
Precision (sample 800 µg/mL)	6 x l	180	
Sample determination	3 × I	90	
Summary	7.35 h		

THANK YOU Any Question?